
AIOS: LLM AGENT OPERATING SYSTEM

Kai Mei 1 Xi Zhu 1 Wujiang Xu 1 Wenyue Hua 1 Mingyu Jin 1

Zelong Li 1 Shuyuan Xu 1 Ruosong Ye 1 Yingqiang Ge 1 Yongfeng Zhang 1

ABSTRACT

LLM-based intelligent agents face significant deployment challenges, particularly related to resource management.
Allowing unrestricted access to LLM or tool resources can lead to inefficient or even potentially harmful resource
allocation and utilization for agents. Furthermore, the absence of proper scheduling and resource management
mechanisms in current agent designs hinders concurrent processing and limits overall system efficiency. As the
diversity and complexity of agents continue to grow, addressing these resource management issues becomes
increasingly critical to LLM-based agent systems. To address these challenges, this paper proposes the architecture
of AIOS (LLM-based AI Agent Operating System) under the context of managing LLM-based agents. It introduces
a novel architecture for serving LLM-based agents by isolating resources and LLM-specific services from agent
applications into an AIOS kernel. This AIOS kernel provides fundamental services (e.g., scheduling, context
management, memory management, storage management, access control) and efficient management of resources
(e.g., LLM and external tools) for runtime agents. To enhance usability, AIOS also includes an AIOS-Agent SDK,
a comprehensive suite of APIs designed for utilizing functionalities provided by the AIOS kernel. Experimental
results demonstrate that using AIOS can achieve up to 2.1× faster execution for serving agents built by various
agent frameworks. The source code is available at https://github.com/agiresearch/AIOS.

1 INTRODUCTION
In autonomous agents research, efforts (Wooldridge & Jen-
nings, 1995; Jennings et al., 1998; Bresciani et al., 2004)
have been made towards agents that can perceive environ-
ments, understand instructions, make decisions, take actions
and learn from feedbacks. The advent of large language
models (LLMs) (Achiam et al., 2023; Touvron et al., 2023a;
Team et al., 2023) has brought new possibilities to the agent
development (Ge et al., 2023a). Current LLMs have shown
great power in understanding instructions (Ouyang et al.,
2022; Chung et al., 2022; Touvron et al., 2023b; Geng et al.,
2022), reasoning and solving problems (Kojima et al., 2022;
Nijkamp et al., 2022; Taylor et al., 2022; Hao et al., 2023;
Kim et al., 2023), and interacting with human users (Ross
et al., 2023) as well as external environments (Driess et al.,
2023; Brohan et al., 2023). Built upon these powerful LLMs,
emergent LLM-based agents (Ge et al., 2023a; Yao et al.,
2023; Shinn et al., 2023; Deng et al., 2023; Wu et al., 2024)
can present strong task fulfillment abilities in diverse envi-
ronments, ranging from virtual assistants to more sophis-
ticated systems involving complex and creative problem
solving, planning and reasoning.

1Department of Computer Science, Rutgers University, New
Brunswick, NJ 08854, USA. Correspondence to: Yongfeng Zhang
<yongfeng.zhang@rutgers.edu>.

Copyright 2024 by the author(s).

One example of how an LLM-based agent (e.g., travel agent)
solves real-world tasks can be seen from Figure 1. Given the
trip organization request from the user, the travel agent de-
composes the task into executable steps. Then, it follows the
steps to book flights, reserve hotels, process payments, and
update calendars based on the user’s preferences. During
the plan execution, agents show the reasoning and decision-
making abilities based on LLMs, which sets it apart from the
traditional software applications that are constrained to a pre-
defined set of functions or workflow. To realize this travel
scenario, the agent needs to interact with both LLM-related
services (e.g, retrieving and understanding user preferences,
deciding which tool API to call, generating reviews and
responses) and traditional operating system (OS) services
(e.g., accessing disk driver and executing software).

Despite the advancements in agent development, existing
agent applications and frameworks exhibit critical limita-
tions in design and implementation. System-level resources
such as LLMs and tools (Qin et al., 2024), are typically
treated as direct inputs to agents, granting agents explicit
access and control. Such implementations can compromise
optimal resource utilization and potentially expose the sys-
tem to vulnerabilities if some agents exploit the resources.
For example, without a proper scheduling mechanism, one
agent may dominate the LLM by sending excessive prompt
requests to LLM while other agents have to wait. As current
agent-based systems lack appropriate mechanisms to man-

ar
X

iv
:2

40
3.

16
97

1v
3

 [
cs

.O
S]

 7
 N

ov
 2

02
4

https://github.com/agiresearch/AIOS

AIOS: LLM Agent Operating System

Travel Agent: Understood. I’ll plan and book your itinerary according to your previous preferences.

User: I'm flying from San Francisco to New York for business next month, please help organize the trip.

Preference
Retrieval

Flight and hotel
Recommendation

Photo ID
Upload

Seat
Selection

Add Ticket to
Calendar

Payment
Processing

Reviews
and tips

LLM Storage
(managed by LLM)

Tool API
(managed by LLM)

Disk Storage
(managed by OS)

Software
(managed by OS)

Tool API
(managed by LLM)

Software
(managed by OS)

Text Generation
(managed by LLM)

1Step 2Step 3Step 4Step 5Step 6Step 7Step

Figure 1. A motivating example of how an agent (i.e., travel agent) requires both LLM-related and Non-LLM-related (i.e., OS) services to
complete a task, where color in red represents services related to LLM and color in blue represents services not related to LLM.

age resources such as LLMs, this also inhibits the system
efficiency. For example, calling LLMs by prompts in the
existing agent frameworks (e.g., Autogen, Langchain) under
the concurrent setting predominantly employ a trial-and-
error approach: prompts are fed into the LLM, converted to
tensors, and loaded into GPU memory for execution. When
CUDA memory capacity is exceeded, the system triggers
an out-of-memory exception, deallocates the tensor, and sig-
nals failure to the requesting agent, necessitating repeated
retry attempts until successful execution. This strategy sig-
nificantly impacts system throughput and increases agent re-
sponse latency, particularly in environments where multiple
agents compete for limited GPU resources during inference.

To mitigate the limitations of deploying and running LLM-
based agents, we introduce AIOS, an architecture designed
to serve LLM-based agents more efficiently. Our contribu-
tions can be summarized in four parts.

◦ New Agent-serving Architecture. We introduce AIOS,
a novel architecture for serving LLM-based agents. This
architecture divides agent applications and their accessible
resources such as LLMs and tools into distinct layers, i.e.,
the application layer and the kernel layer. This separation
enables more systematic resource management, efficiency
optimization, and safety enhancement.

◦ AIOS Kernel Design and Implementation. At the core
of AIOS, we design and implement an AIOS kernel. In
this kernel, agent primitives are designed to decompose
LLM-related queries into sub execution units to enhance
concurrency. To orchestrate the execution of these agent
primitives, we develop an agent scheduler for scheduling
and dispatching primitives to appropriate execution modules.
Additionally, we implement memory, storage, and tool man-
agers, along with the LLM core(s), to handle the execution
of dispatched primitives. To prevent long-context requests
consuming the LLM resource, we design a context manager
to handle context interruptions and recoveries in the LLM
core(s), especially in long-context scenarios. Moreover, an
access manager is implemented to verify agent access rights
before executing operations.

◦ AIOS-Agent SDK Development. We develop the AIOS-
Agent SDK, which provides a higher level abstraction of
kernel functionalities, allowing developers to focus on appli-
cation logic and higher-level functionalities without being
burdened by the implementation details in the kernel.

◦ Empirical Results. We conduct extensive evaluations
of AIOS on agents developed using various agent frame-
works. The experimental results demonstrate that AIOS can
maintain the performance of agents across a wide range of
standard benchmarks and can even enhance performance
in benchmarks that involve calling external tools under the
concurrent execution conditions. Furthermore, AIOS signifi-
cantly improves execution efficiency, achieving up to a 2.1×
increase in execution speed for serving agents across differ-
ent frameworks. These experimental results underscore the
effectiveness of AIOS in optimizing both agent performance
and execution speed in supporting diverse agent frameworks
in resource-restricted environments.

2 THE ARCHITECTURE OF AIOS
As depicted in Figure 2, the AIOS architecture is divided
into three distinct layers: the application, kernel, and hard-
ware layers. This layered design is intended to establish a
clear separation of concerns within the system. Higher-level
applications abstract the complexities of the underlying lay-
ers, interacting with them through well-defined interfaces
such as software development kits (SDKs) and system calls.

Application Layer. At the application layer, agent applica-
tions are developed using the AIOS-Agent SDK, which pro-
vides the interface for requesting system resources through
invoking system calls. On one hand, by using the SDK to
request resources, agents are relieved from the burden of
handling resource management. On the other hand, the SDK
also facilitates isolation, ensuring that system resources can-
not be directly manipulated by agents. The AIOS-Agent
SDK is designed not only to support agents developed by
using the native SDK functions, but also to facilitate the
integration of non-native agents built with various agent
creation frameworks, such as ReAct (Yao et al., 2023), Re-

AIOS: LLM Agent Operating System

Keyboard/Mouse
Network Request

Agent Application

Hardware

Context
Manager

Agent
Scheduler

Storage
Manager

AIOS System Call

AIOS-Agent SDK

OS System Call

Memory Manager

Process Scheduler

Filesystem

Hardware Driver

OS Kernel AIOS Kernel

Tool
Manager

Access
Manager

Rec AgentTravel Agent Coding Agent

CPU GPU Memory Peripheral Devices

Application Layer

Kernel Layer

Hardware Layer

Math Agent Narrative Agent

Memory
Manager

Disk

Non-LLM Related Queries LLM Related Queries

LLM
Core(s)

File Operation Reasoning & Planning
Tool Parsing

Code Generation

Figure 2. An overview of the AIOS architecture where responsibilities are isolated across different layers. Application layer facilitates
the design and development of agent applications. Kernel layer manages core functionalities and resources to serve agent applications.
Hardware layer controls and manages physical computing resources and devices to support kernel layer functionalities.

flexion (Shinn et al., 2023), Autogen (Wu et al., 2023),
Open-Interpreter (Lucas, 2024), and MetaGPT (Hong et al.,
2023). By providing the agent adapter function, the SDK
supports non-native agents by allowing them to interact with
the AIOS kernel resources. For native agent development,
the SDK simplifies the creation of agents by offering pre-
defined modules and APIs to achieve functionalities through
invoking system calls, so that agents can request resources
provided and managed by the AIOS kernel. This helps de-
velopers focus on the agent’s primary workflows and logic
rather than low-level implementation details.

Kernel Layer. The kernel layer is composed of two distinct
yet synergistic components: the traditional OS kernel and
the specialized AIOS kernel, each fulfilling unique roles
within the system’s functionality. The OS kernel retains its
conventional architecture to manage non-LLM related com-
puting tasks, while our core innovation centers around the
AIOS kernel. Within the AIOS kernel, several modules are
designed to facilitate agent requests through AIOS system
calls. A scheduler is designed to dispatch these system calls
to appropriate modules and employ strategies for schedul-
ing AIOS system calls, which we will discuss in detail in
Section 3.3. To facilitate the integration of diverse LLM
endpoints, we design a unified interface that encapsulates
LLMs as cores, akin to CPU cores, thereby allowing the
integration of various LLM endpoints via a single interface.
Additionally, to support context switching for LLMs, a con-

text manager is introduced with mechanisms for context
snapshot and restoration, further detailed in Section 3.4. To
optimize agent memory handling, we develop a memory
manager for managing agent memory operations and a stor-
age manager for persistent storage operations, which will
be explained further in Section 3.5 and Section 3.6, respec-
tively. In addition, a tool manager is designed to load tools
and manage tool call conflicts for the tools supported in the
AIOS-Agent SDK, which will be covered in Section 3.7.
Lastly, an access manager is designed with access control
and user intervention, which we elaborate on in Section 3.8.

Hardware Layer. The hardware layer consists of the phys-
ical components of the system, such as the CPU, GPU,
memory, disk, and peripheral devices. The hardware layer
is not the main focus of the work—AIOS kernel does not
directly interact with the hardware but relies on OS system
calls to access the physical resources in the hardware layer.

3 AIOS KERNEL
In this section, we start with an overview of the AIOS kernel,
highlighting how each module collaborates with other mod-
ules to support integrated functionalities. Following this, we
provide an in-depth look into the design and implementation
of each module, discussing their roles and contributions to
the overall AIOS architecture.

AIOS: LLM Agent Operating System

LLM Core(s)

Storage ManagerTool Manager

Memory Manager

Scheduler

C2.2Tool Queue F3.2

A1.2Memory Queue D2.2

Agent Queries

Content: {xxx}
Type: Chat

Content: {xxx}
Type: File Operation

Content: {xxx}
Type: Tool Use

Content: {xxx}
Type: Chat

Content: {xxx}
Type: File Operation

Content: {xxx}
Type: Tool Use

Query Decomposition

Thread Binding

In-processing system call Execution chain

AIOS Kernel

Query A1 Query B1 Query C2 Query D2 Query E3 Query F3

A1.1 LLM Syscall

A1.2 Memory Syscall

B1.1 LLM Syscall

B1.2 Storage Syscall

B1.3 Memory Syscall

C2.1 LLM Syscall

C2.2 Tool Syscall

C2.3 Memory Syscall

D2.1 LLM Syscall
E3.1 LLM Syscall

E3.2 Storage Syscall

E3.3 Memory Syscall

F3.1 LLM Syscall

F3.2 Tool Syscall

F3.3 Memory Syscall

D2.2 Memory Syscall

AIOS System Call

Context Manager

E3.1LLM Queue

B1.2Storage Queue

Figure 3. How agent queries are decomposed into AIOS system calls and how AIOS system calls are dispatched and scheduled. We omit
the access manager module here as the access-related system calls will not be dispatched by the scheduler.

Table 1. AIOS system calls that are dispatched in the scheduler.

Module AIOS System Call

LLM Core(s) llm_generate
Memory Manager mem_alloc, mem_read, mem_write, mem_clear
Storage Manager sto_create, sto_read, sto_write, sto_clear, sto_retrieve
Tool Manager tool_run

3.1 Relationship and Connection between Modules
In the AIOS kernel, queries from agent applications are de-
composed into distinct AIOS system calls, each categorized
by functionality, such as LLM processing, memory access,
storage operations, or tool usage, as illustrated in Figure 3.
A subset of these system calls is shown in Table 1, while a
comprehensive list can be found in Appendix A.1.

After decomposition, each system call is bound to an exe-
cution thread and subsequently dispatched by the scheduler.
The scheduler centralizes and manages multiple queues for
various modules, such as the LLM core(s), memory man-
ager, storage manager, and tool manager. As a result, system
calls are directed to the appropriate queue based on a spe-
cific attribute set assigned to each call. Each module listens
to its corresponding queue in the scheduler and fetches the
system calls scheduled to process. Among these processing
modules, context manager is responsible for handling inter-
ruptions that may occur during the execution of system calls
in the LLM core(s) (Section 3.4). Additionally, there is in-
ternal data swap between the memory manager and storage
manager due to memory limitations. This modular archi-
tecture enables key components, such as the LLM core(s),

Table 2. Supported LLM instances in AIOS and the corresponding
deployment options (no offline option for closed-source LLMs).

Online Offline

Open-source Bedrock Huggingface, vllm, Ollama
Closed-source GPT, Claude, Gemini, Grok -

memory manager, storage manager, and tool manager, to
process requests concurrently within dedicated queues, en-
hancing isolation and parallelism. Thread binding imple-
mentations are detailed in Appendix A.1, while the data
swap between memory and storage manager is covered in
Section 3.5.

3.2 LLM Core(s)
Due to the various deployment options of LLMs, e.g., which
LLM is used, whether the LLM is hosted on cloud or on
local device, what hardware conditions the LLM requires,
or which inference framework is used, we encapsulate each
LLM instance adopting different deployment options as a
core, akin to a CPU core in a traditional operating system.

This design allows us to treat each LLM instance as a ded-
icated processing unit, enhancing the modularity and ex-
tensibility within the AIOS architecture. To accommodate
different LLM instances, we introduce a wrapper for each
LLM instance and design unified system calls within this
wrapper specifically for LLM inference. By abstracting an
LLM instance as a core and implementing standardized sys-
tem calls, AIOS provides a flexible way to integrate LLM

AIOS: LLM Agent Operating System

Agent request: Determine whether there will be
a rain in the destination of flight UA057.

LLM

LLM

Search

weather

in

Retrieve

of

time

/s
0.6 0.4

0.7 0.3

0.8 0.2

Search Retrieve

/s
0.6 0.4

Search

weather

Retrieve

time

/s
0.6 0.4

0.7 0.3
Search

weather

Retrieve

time

/s
0.6 0.4

0.7 0.3

C
ontext M

anager

Search

weather

in

Retrieve

of

time

/s
0.6 0.4

0.7 0.3

0.8 0.2

Search

weather

in

Retrieve

of

time

/s
0.6 0.4

0.7 0.3

0.8 0.2

Paris London

Suspended

Snapshot

Restore

Search weather in Paris

1

2

3

3

4

0.7 0.3

Figure 4. Illustration of the logits-based context snapshot and
restoration process. We use beam search algorithm where beam
width is set to 1 as an example.

instances under different deployment options, attributed to
the modular design of the LLM core(s). Detailed informa-
tion of LLM core(s) is provided in Appendix A.2.

3.3 Scheduler
Instead of placing separate queues within each processing
module (e.g., LLM core(s) or memory manager), we cen-
tralize all the queues within the scheduler module. This
approach isolates the responsibility for request management
from the individual modules, allowing each processing mod-
ule to focus on its execution. Besides, centralizing queue
management in the scheduler simplifies the coordination of
tasks across modules and provides a unified framework for
scheduling. To schedule the AIOS system calls dispatched
for each module in queues, we utilize two classic schedul-
ing algorithms: First-In-First-Out (FIFO) and Round Robin
(RR) due to their effectiveness and simplicity. The FIFO
strategy processes system calls in the order they arrive, en-
suring a straightforward handling sequence but potentially
leading to increased waiting times for system calls queued
later. In contrast, the RR strategy cycles through system
calls in a time-sliced manner, allowing for more balanced
resource distribution and reduced waiting times under high
load conditions. To support time-slicing for the RR schedul-
ing strategy, we introduce the context interrupt mechanism
for LLM inference, which will be introduced in Section
3.4. Our centralized queue architecture provides a flexible
foundation that accommodates diverse scheduling optimiza-
tions, from basic to sophisticated strategies. We provide the
detailed implementation in Appendix A.3.

3.4 Context Manager
The inference time of LLMs is a critical bottleneck that can
lead to long-running system calls, potentially monopolizing
system resources. To address this issue and ensure effi-

cient resource management, we design a context interrupt
mechanism. This mechanism allows for the interruption and
resumption of tasks through context snapshot and restora-
tion operations, preventing prolonged system calls from
dominating the LLM inference process.

The context manager designs two methods to capture and
restore context based on different decoding strategies: text-
based and logits-based approaches. For closed-source LLMs
without logits access, the text-based approaches directly
save the decoded text outputs and follow the previous decod-
ing strategy at intermediate stages. Conversely, the logits-
based approach preserves the structure of the intermediate
search tree generated during inference, allowing for more
fine-grained restoration of the computational state. This
approach can be particularly advantageous for maintain-
ing continuity in tasks requiring complex decoding strategy.
The detailed procedure for the logits-based method is illus-
trated in Figure 4. We use the beam search process, a typical
practice in LLMs (Touvron et al., 2023b; Jiang et al., 2023;
Biderman et al., 2023), to illustrate the generative decod-
ing process. For simplicity of illustration, we set the beam
width as 1. Specifically, consider the prompt to the LLM
as: Determine whether there will be rain in the destination
of flight UA057. At each step, the LLM evaluates multiple
candidate tokens, with the most promising paths kept for fur-
ther expansion based on the predefined beam width. When
the generation process is suspended by the scheduler at an
intermediate step, the context manager uses the snapshot
function to capture and store the current intermediate out-
puts of the LLM. Upon resumption, the restoration function
is employed to reload the saved output from the snapshot,
allowing the LLM to continue its generation process ex-
actly from the point of suspension to reach the final answer:
Search weather in Paris. In this way, the context manager
ensures that the temporary suspension of one agent’s re-
quest does not lead to a loss of progress, thereby improving
efficiency since it does not need to generate from scratch.

3.5 Memory Manager
Unlike traditional OS memory manager that handles physi-
cal memory management such as RAM, the “memory” un-
der the context of LLM-based agent refers to an agent’s
interaction history during the agent’s runtime (Lerman &
Galstyan, 2003; Zhang et al., 2024), such as the agent’s
conversation history with the LLM and the execution results
of tool-calling. As a result, the memory manager in AIOS
handles the management of these agent memories during
the agent’s runtime, such as memory structure, allocation,
read, write, deletion, update, and compression. Agent mem-
ory is stored and managed on RAM by default, but when
the agent’s allocated RAM space is used up, the memory
manager will swap agent’s memory between RAM and disk
through an eviction policy. More details are in the following.

AIOS: LLM Agent Operating System

 User: I need to buy a new phone. Looking for something with a
great camera, at least 128GB storage, and 5G compatible. Budget is
around $800.

 Agent: Understood, I’ll call the google search of related items for you.

Interaction History with Agent B (ID=2)

 Memory Manager

Agent ID: 1

Agent ID: 2

Agent ID: n
…

 Original Interaction History

 Compressed Block
Memory Limit

K-LRU
Eviction

 Storage Manager
Agent A Agent B… Agent X

Figure 5. Illustration of memory and storage manager as well as
their relationship. An agent’s memory item in its memory block
will be evicted to storage if its memory usage exceeds the memory
limit, which is set to 80% of the memory block size. This threshold
is configurable through AIOS configuration.

Trie-based Compression. The memory manager will al-
locate a fixed size memory block in RAM for each agent
based on its runtime ID. This memory block is sized to
remain within the LLM’s maximum context length so that
even agents construct prompts by combining all the mem-
ory items from its memory block, the prompts will not
exceed the LLM’s context window to cause crashes. To
optimize memory utilization, the memory manager lever-
ages a prefix-tree (trie) based compression mechanism when
writing memories, since the memory items of an agent often
contain overlapping prefixes. Implementation details of the
memory compress are presented in Appendix A.5.

Memory Eviction Policy. As mentioned above, the memory
block for each agent has a size limit, which is stored in RAM
by default. If an agent’s memory usage exceeds the limit
of its memory block, e.g., 80% of its allocated memory
block, the memory manager swaps agent’s memory items
between RAM and disk by initiating a K-Least Recently
Used (K-LRU) eviction policy, which evicts memory items
stored in RAM to disk by calling the storage manager (to
be introduced in Section 3.6). The K-LRU eviction policy
prioritizes keeping frequently accessed memory items in the
RAM memory block, while less frequently used memory
items will be moved by the storage manager to the disk.
This approach balances memory efficiency and enables the
system to offload less frequently visited data to disk and
retrieves it when needed. The details of the K-LRU eviction
policy are also presented in Appendix A.5.

3.6 Storage Manager
The storage manager handles persistent data storage for
agents, such as files or knowledge bases that agents depend
on to run and the agent memories that need to be persis-
tently stored. The storage manager uses the same trie-based
compression technique as the memory manager to optimize
data storage. During an agent’s runtime, when the agent’s
memory usage exceeds the allocated limit, the memory
manager calls the storage manager to swap the data into the
disk. Specifically, the storage manager reads and writes data
based on the agent ID passed from the memory manager.
In addition to the memory manager, the agent itself may
also request to read and write data on disk during runtime,
and these agent requests are also handled by the storage
manager. Specifically, the agent calls the storage API in
the SDK, which is further converted into storage-related
system calls and put into the storage queue by the sched-
uler. The storage manager then processes the requests in
the queue to fulfill the agent requests. The storage manager
is implemented using local files and vector database (e.g.,
chromadb). Implementation details of the storage manager
are included in Appendix A.6.

3.7 Tool Manager
The tool manager in the AIOS kernel is responsible for
managing a broad suite of API tools supported by the AIOS-
Agent SDK. When a tool is called by the tool name, the
tool manager dynamically loads the associated tool instance
by referencing its registration data stored within the sys-
tem. This process ensures that the necessary implementation
details, such as the tool’s executable location, required li-
braries, and dependencies, are properly initialized. The tool
manager utilizes a standardized interface to invoke the tool,
allowing it to manage diverse tools under a uniform struc-
ture. Before executing a tool, the tool manager integrates a
parameter validation process, verifying input parameters to
prevent crashes of calling tools.

Resolution of Tool Call Conflicts. To manage tools with
parallel access restrictions and usage limits, the tool man-
ager uses a hashmap to track the number of instances of each
tool currently being executed in the system. This hashmap
helps monitor each tool’s status and resolve conflicts arising
from access limitations. When processing requests in the
queue, the tool manager first checks the hashmap to deter-
mine whether the requested tool has reached its maximum
usage limit or parallel access limit. If a conflict is detected,
for example, when a tool has reached its parallel access limit,
the manager moves to the next request in the queue and re-
peats this check. This process continues until the manager
identifies a request that can be processed without conflicts.
The implementation details are presented in Appendix A.7.

AIOS: LLM Agent Operating System

Autogen
Agent A

Open-Interpreter MetaGPT
Agents

action_type = “chat”
messages = [“xxx”]
message_return_type = “text”

AIOS-Agent SDK

action_type = “tool_use”
messages = [“xxx”]
tools = [“google_search”, “arxiv”]
message_return_type = “json”

Tool Use
action_type = “file_operation”
messages = [“xxx”]
tools = [“retrieve”, “add”, “update”]
message_return_type = “json”

File Operation

AIOS Kernel

LLM-related Queries
action_type: str = Literal[“chat”, “tool_use”, ”file_operation”]
messages: List[Dict[str, Union[str, Any]]]
tools: Optional[List[Dict[str, Any]]]
message_return_type: str = Literal[“text”, “json”]

Agent B Agent C Agent D Agent E Agent F

Chat

Figure 6. Illustration of how agent applications leverage the AIOS-
Agent SDK to send queries to the AIOS Kernel. For simplicity,
queries sent directly to the OS kernel are omitted.

3.8 Access Manager
The access manager in the AIOS kernel provides the follow-
ing two key functionalities.

Access Control. The access manager controls read and
write permissions when some agents request read and write
operation of other agent’s data such as memory. The access
manager achieves this by assigning each agent to a specific
privilege group. Agents can only access resources, such as
LLM interaction history or tool usage logs of other agents
only if they are within other agents’ privilege group. To man-
age these permissions, the access manager uses a hashmap,
where each agent’s ID is mapped to its assigned privilege
group. When an agent requests access to a resource, the
access manager checks the hashmap to verify the agent’s
permissions before allowing the request to proceed.

User Intervention. To prevent accidental or unintended
operations when users interact with AIOS, particularly irre-
versible operations such as deletion, overwrite and privilege
change, we provide a user intervention interface. This inter-
face provides users with prompt checks to confirm before
these irreversible operations are executed over files or tools.
The implementation details are presented in Appendix A.8.

3.9 AIOS-Agent SDK
We design the AIOS-Agent SDK to streamline the devel-
opment and integration of agents on the AIOS architecture.
This SDK not only empowers developers to build agents
that interact with the core functions in the AIOS kernel but
also abstracts complex system calls, allowing developers to
focus on the agent’s internal workflows.

Tool Integration. To support diverse agent functionali-
ties, the AIOS-Agent SDK integrates a wide range of tools
sourced from various platforms and supports them natively,
covering both online and offline capabilities and supporting

multiple input-output modalities. This integration allows
agents to access resources and tools seamlessly, regardless
of their origins or configurations. Detailed information on
these integrated tools is provided in Appendix B.2.

Interaction Interface with the AIOS Kernel. To facilitate
the utilization of functions provided by AIOS system calls
in the AIOS kernel, the SDK defines three main functions
that agents can use to invoke system calls and request re-
sources. These functions categorize agent queries based on
the type of action, streamlining operations and improving
resource management. As shown in Figure 6, the SDK de-
fines three main types of agent queries: chat, tool_use, and
file_operation, each specified by the action_type attribute.
Through the functions provided by SDK, agents can commu-
nicate with the AIOS kernel to access resources by invoking
system calls instead of directly manipulating resources.

Agent Framework Adapter. To support agents built with
various agent creation frameworks, such as Autogen (Wu
et al., 2023), Open-Interpreter (Lucas, 2024), and MetaGPT
(Hong et al., 2023), the AIOS-Agent SDK provides adapters
for these frameworks. These adapters locate the core func-
tions in the aforementioned frameworks and redirect them to
the functions in AIOS. This adaptation allows agents from
different frameworks to operate within the AIOS environ-
ment without modification of the agent code. Further details
on the core functions and specific adaptations for each agent
framework are provided in Appendix B.4.

4 EVALUATION
In this section, we conduct experiments to answer the fol-
lowing research questions.

• RQ1: Can AIOS maintain or even enhance the perfor-
mance of agents on standard benchmarks when running
multiple agent instances simultaneously?

• RQ2: How effectively can AIOS optimize system execu-
tion throughput and reduce response latency when serving
numerous agents built with different agent frameworks?

• RQ3: How scalable is AIOS as the number of concurrently
running agents increases?

4.1 Setup
Models. We use the GPT-4o-mini (Achiam et al., 2023) as
the closed-source API, and use two open-source LLMs, i.e.,
Llama-3.1-8b (Dubey et al., 2024) and Mistral-7b (Jiang
et al., 2023), as the LLM core, respectively, during the
experiments. The open-source models are both instruction-
tuned versions and we use float16 precision.

Hardware. Our experiments are conducted on an Ubuntu
22.04 machine equipped with NVIDIA RTX A5000 GPUs
(24GB). We run all experiments using a single A5000 GPU.

AIOS: LLM Agent Operating System

Table 3. Evaluation of agent performance on benchmarks w/o and
w/ AIOS, respectively. Success rate (SR%) is used as the metric
for all the benchmarks. "-" represents methods that failed GAIA
benchmark tasks due to lack of API support.

Method HumanEval MINT
(Code)

GAIA SWE-
Bench-Lite

ReAct w/o AIOS 48.8 29.4 5.5 3.9
ReAct w/ AIOS 50.6 30.1 7.3 4.3

Reflexion w/o AIOS 50.6 32.4 6.7 4.7
Reflexion w/ AIOS 51.8 33.8 7.8 5.1

Autogen w/o AIOS 87.8 42.5 7.3 4.3
Autogen w/ AIOS 87.8 42.5 9.7 4.3

Open-Interpreter w/o AIOS 85.4 45.9 - 4.7
Open-Interpreter w/ AIOS 86.0 48.7 - 5.1

MetaGPT w/o AIOS 82.9 41.1 - 5.9
MetaGPT w/ AIOS 82.9 41.8 - 5.9

Agent Frameworks. We conduct evaluation by running
agents built from various popular agent frameworks: ReAct
(Yao et al., 2023), Reflexion (Shinn et al., 2023), Auto-
gen (Wu et al., 2023), Open-Interpreter (Lucas, 2024) and
MetaGPT (Hong et al., 2023). Details of these agent frame-
works are introduced in Appendix B.4.

Workloads. We evaluate on a resource-constrained sce-
nario in which agents run concurrently with a single LLM
deployed that can process only one prompt request at a time.
To create these concurrent conditions, we set the maximum
number of working threads to 250 by default, i.e., at most
250 agents can run concurrently at the same time. The im-
pact of increasing the number of agents will be analyzed
in Section 4.4. By default, we use RR as the scheduling
strategy for AIOS to run agents. The impact of using other
strategy (i.e., FIFO) is reported in Section 4.3.

4.2 Agent Performance (RQ1)
To evaluate whether using AIOS can maintain or even im-
prove the agent performance on standard benchmarks, we
adopt four agent benchmarks, i.e., HumanEval (Chen et al.,
2021a), MINT (the code subset) (Wang et al., 2023b), GAIA
(Mialon et al., 2023) and SWE-Bench-Lite (Jimenez et al.,
2024) to run agents without and with AIOS, respectively.
We use the success rate (SR%) as the metric, consistent
with the original benchmarks and use GPT-4o-mini as the
LLM core to run all the agents. To eliminate randomness,
we set the temperature to 0 for GPT-4o-mini in all experi-
ments. Detailed descriptions of the benchmark setups and
configurations can be found in Appendix C.

As shown in Table 3, incorporating AIOS consistently main-
tains agent performance across standard benchmarks. In
some cases, AIOS can also contribute to agent performance
improvements. For example, in code generation benchmarks
such as MINT, HumanEval, and SWE-Bench-Lite, AIOS
boosts agent performance by prompt enhancement, which

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(a) Normalized throughput. Higher is better.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

La
te

nc
y

(N
or

m
al

iz
ed

)

With AIOS Without AIOS

(b) Normalized latency. Lower is better.

Figure 7. Efficiency analysis on different agent frameworks evalu-
ated on the Llama-3.1-8b model on the HumanEval benchmark.

embeds the system prompts with more structural input and
output within the LLM wrapper. These enhanced prompts
provide the LLM with additional context and structural
guidance for higher-quality code generation. In tool calling
benchmarks like GAIA, agent performance is boosted for
two main reasons. First, the tool manager implements a
post-verification process using structural regex to ensure
that the input parameters for tool calls conform the correct
format. This extra validation step helps prevent errors by
catching incorrect tool names or parameters generated by
the LLM before the tool call is executed. Second, AIOS
employs conflict resolution to manage tool calls, preventing
conflicts that might otherwise cause successful tool calls
to fail. By mitigating issues from concurrent tool access,
AIOS ensures stable operation for agents during execution.

4.3 Efficiency Analysis (RQ2)
In our efficiency experiments, we evaluate system perfor-
mance using two key metrics: throughput and latency.
Throughput is measured by counting the number of AIOS
system calls executed per second, indicating the system’s
capacity to handle multiple requests in parallel. Latency, on
the other hand, is measured as the average waiting time ex-
perienced by agents, from the moment a query is submitted
to the completion of the response, reflecting the system’s
responsiveness. To ensure a controlled and consistent test-
ing environment, we conduct these evaluations using the
two open-source models, Llama-3.1-8b and Mistral-7b, both
hosted locally. Hosting these models locally reduces poten-
tial variability in LLM API response times due to network-
related latency issues. As shown in Figure 7a and Figure 8a,
the results demonstrate that AIOS achieves significantly
higher throughput across different agent frameworks, to a
2.1× increase in throughput when using Reflexion-based

AIOS: LLM Agent Operating System

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(a) Normalized throughput. Higher is better.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(b) Normalized latency. Lower is better.

Figure 8. Efficiency analysis on different agent frameworks evalu-
ated on the Mistral-7b model on the HumanEval benchmark.

Table 4. Impact of using different scheduling strategies, where
NONE represents without using AIOS, FIFO and RR represent
using AIOS with the two different scheduling strategies. All met-
rics are reported in minutes, including overall execution time and
agent waiting time (average and p90).

Strategy Overall execution time Agent waiting time

Avg. p90

None 152.1 9.8 11.0

FIFO 74.2 3.0 5.0

RR 77.3 3.2 4.2

agents on Llama-3.1-8b. This improvement is attributed to
the scheduling employed in the AIOS kernel, which prevents
unnecessary trial-and-error attempts by avoiding prompts
that cannot be loaded onto the GPU for execution. In terms
of latency, as illustrated in Figure 7b and Figure 8b, the
average waiting time for agents is also substantially reduced.
This reduction highlights the efficiency of AIOS in serving
LLM-based agents.

Impact of Different Scheduling Strategies. To further an-
alyze the impact of different scheduling strategies on system
efficiency, we conduct an ablation study using agents built
with ReAct on the HumanEval benchmark with the Llama-
3.1-8b model. We test three strategies: without AIOS, FIFO,
and Round Robin (RR), and measure the overall execution
time and agent waiting time (average and p90).

As shown in Table 4, the FIFO strategy achieves the shortest
overall execution time compared to the other strategies. RR
comes second in terms of overall execution and average
agent waiting time, as its context switching introduces addi-

250 500 750 1000 1250 1500 1750 2000
Number of Agents

200

400

600

800

1000

Ov
er

al
l E

xe
cu

tio
n

Ti
m

e
(m

in
s)

on Mistral-7b with AIOS
on Mistral-7b without AIOS
on Llama-3.1-8b with AIOS
on Llama-3.1-8b without AIOS

(a) Overall Execution Time v.s. Agent Number.

250 500 750 1000 1250 1500 1750 2000
Number of Agents

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Ag
en

t W
ai

tin
g

Ti
m

e
(m

in
s)

on Mistral with AIOS
on Mistral without AIOS
on Llama with AIOS
on Llama without AIOS

(b) Average Agent Waiting Time v.s. Agent Number.

Figure 9. Overall execution time and average agent waiting time
when agent number increases from 250 to 2000.

tional overhead. However, RR performs better on the p90
metric (i.e., the value below which 90% of waiting times
fall) due to its fairer scheduling approach, which reduces the
likelihood of later tasks having longer waiting time, which
can typically occur in FIFO.

4.4 Scalability Analysis (RQ3)
In this section, we evaluate the scalability of AIOS by pro-
gressively increasing the number of active agents from 250
to 2000. These experiments were conducted using the
Llama-3.1-8b and Mistral-7b models on the HumanEval
benchmark. Since the HumanEval dataset contains only 164
samples, we scaled up the dataset by duplicating samples
to match the increasing number of agents, enabling large-
scale concurrent execution of agent instances. As shown in
Figure 9a and Figure 9b, the results demonstrate that using
AIOS can allow both the overall execution time and the av-
erage agent waiting time to maintain an approximate linear
relationship with the number of agents. This predictable,
linear scaling illustrates AIOS’s ability to handle increas-
ing workloads efficiently, even as demand intensifies. In
contrast, without AIOS, the execution and waiting times
increase at a faster rate. The gap between using AIOS and

AIOS: LLM Agent Operating System

not using AIOS widens as the number of agents increases,
underscoring AIOS’s effectiveness in managing concurrent
operations. As workloads scale, AIOS can still maintain sys-
tem stability and responsiveness, reducing both execution
and waiting times compared to configurations without AIOS.
This growing performance advantage highlights AIOS’s suit-
ability for environments with high or fluctuating workloads,
demonstrating its potential to serve a large number of agents.

5 RELATED WORK
5.1 Evolution of Operating Systems
The evolution of operating systems (OS) has unfolded in a
progressive way, evolving from rudimentary systems to the
complex and interactive OS of today. Their evolution saw a
transition from simple batch job processing (IBM, 2010) to
more advanced process management techniques like time-
sharing (Ritchie & Thompson, 1974) and multi-task pro-
cessing (Hoare, 1974; Engler et al., 1995), which facilitated
the handling of increasingly complex tasks. The progress
moved toward modularization within the OS, delineating
specific responsibilities such as process scheduling (Liu &
Layland, 1973; Dijkstra, 2002), memory management (Den-
ning, 1968; Daley & Dennis, 1968), and filesystem man-
agement (Rosenblum & Ousterhout, 1992; McKusick et al.,
1984), enhancing efficiency and manageability. The further
advent of graphical user interfaces (GUIs), e.g., Macintosh,
Windows and GNOME , makes operating systems more
interactive and user-centric. Meanwhile, the operating sys-
tem ecosystem has also expanded, offering a comprehensive
suite of developer tools (OS SDKs) and runtime libraries.
These tools enable application developers to design, im-
plement, and run their applications efficiently within the
OS environment (Ge et al., 2023b). Notable examples of
OS ecosystems include Android Studio , XCode and Cloud
SDK . In these ecosystems, the OS provides numerous re-
sources to facilitate software development and serves as a
platform for deploying and hosting software applications,
leading to a thriving OS-application ecosystem. Recently,
the community is seeing AI models such as LLMs sink-
ing from the application layer down to the system layer
to provide standard services to various applications. With
the incorporation of large language models (LLMs), these
advanced systems promise to further narrow the commu-
nication gap between humans and machines, forwarding a
new era of user-computer interaction.

5.2 Large Language Model Agents
LLM-based single-agent systems (SAS) use a single LLM
agent for complex task solving, such as travel planning (Xie
et al., 2024), personalized recommendation, and artistic de-
sign (Ge et al., 2023a). The agent takes natural language in-
struction from users as input and decomposes the task into a
multistep plan for task solving, where each step may call ex-

ternal tools to be completed, such as collecting information,
executing specialized models, or interacting with the exter-
nal world. Single-agent applications may engage with either
digital environment or physical environment or both, de-
pending on the task to solve. For example, agents in virtual
or digital environment may invoke APIs (Ge et al., 2023a;
Schick et al., 2023; Yao & Narasimhan, 2023; Parisi et al.,
2022; Tang et al., 2023; Xie et al., 2024), browse websites
(Nakano et al., 2022; Deng et al., 2023; Wu et al., 2024),
or execute codes (Zhang et al., 2023; Yang et al.), while
agents in the physical environment may manipulate objects
(Brohan et al., 2023; Fan et al., 2022; Wang et al., 2023a),
carry out lab experiments (Boiko et al., 2023; Bran et al.,
2023), or make actionable decisions (Huang et al., 2022;
Xiang et al., 2023). LLM-based multi-agent systems (MAS)
leverage the interaction among multiple agents for problem
solving. The relationship among the multiple agents could
be cooperative (Wang et al., 2023c; Mandi et al., 2023),
competitive (Chan et al., 2023; Du et al., 2023), or a mixture
of cooperation and competition (Ge et al., 2023b). In coop-
erative multi-agent systems, each agent takes and assesses
the information provided by other agents, thereby working
together to solve complex tasks, such as role playing (Li
et al., 2023; Chen et al., 2023; Zhu et al., 2023), social sim-
ulation (Park et al., 2023) and software development (Hong
et al., 2023; Qian et al., 2023; Wu et al., 2023; Josifoski
et al., 2023). In competitive multi-agent systems, agents
may debate, negotiate and compete with each other in a
game environment to achieve their goals, such as improving
negotiation skills (Fu et al., 2023) and debating about the
correct answer (Du et al., 2023; Chan et al., 2023; Liang
et al., 2023; Hua et al., 2023).

6 CONCLUSION AND FUTURE WORK
This paper introduces AIOS, a novel architecture designed
to serve LLM-based agents. Within this architecture, we de-
sign and implement an AIOS kernel that isolates resources
and LLM-specific services from agent applications for man-
agement. Additionally, we develop the AIOS-Agent SDK
to facilitate the usage of the functionalities provided by the
AIOS kernel for agent applications. Experimental results
demonstrate that AIOS not only maintains, but can also
improve agent performance on standard benchmarks. Fur-
thermore, AIOS significantly accelerates overall execution
time, improves system throughput, and exhibits scalability
as the number of concurrent agents increases. We hope
that the insights and methodologies shared in this work
will contribute to both AI and systems research, fostering a
more cohesive, effective, and efficient ecosystem for serving
LLM-based agents. We believe future research can explore
innovative directions built upon AIOS to refine and expand
AIOS architecture to better meet the evolving requirements
of developing and deploying LLM-based AI agents.

AIOS: LLM Agent Operating System

REFERENCES

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Boiko, D. A., MacKnight, R., and Gomes, G. Emergent
autonomous scientific research capabilities of large lan-
guage models. arXiv preprint arXiv:2304.05332, 2023.

Bran, A. M., Cox, S., White, A. D., and Schwaller, P. Chem-
crow: Augmenting large-language models with chemistry
tools. arXiv preprint arXiv:2304.05376, 2023.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and
Mylopoulos, J. Tropos: An agent-oriented software de-
velopment methodology. Autonomous Agents and Multi-
Agent Systems, 8:203–236, 2004.

Brohan, A., Chebotar, Y., Finn, C., Hausman, K., Herzog,
A., Ho, D., Ibarz, J., Irpan, A., Jang, E., Julian, R., et al.
Do as i can, not as i say: Grounding language in robotic
affordances. In Conference on robot learning, pp. 287–
318. PMLR, 2023.

Chan, C.-M., Chen, W., Su, Y., Yu, J., Xue, W., Zhang, S.,
Fu, J., and Liu, Z. Chateval: Towards better llm-based
evaluators through multi-agent debate. In The Twelfth
International Conference on Learning Representations,
2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
2021a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,

G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021b.

Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Qian, C., Chan,
C.-M., Qin, Y., Lu, Y., Xie, R., et al. Agentverse: Facili-
tating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848,
2023.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Daley, R. C. and Dennis, J. B. Virtual memory, processes,
and sharing in multics. Communications of the ACM, 11
(5):306–312, 1968.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a general-
ist agent for the web. Advances in Neural Information
Processing Systems, 36, 2023.

Denning, P. J. The working set model for program behavior.
Communications of the ACM, 11(5):323–333, 1968.

Dijkstra, E. W. Cooperating sequential processes. In The
origin of concurrent programming: from semaphores to
remote procedure calls, pp. 65–138. Springer, 2002.

Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery,
A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q., Yu, T.,
et al. Palm-e: an embodied multimodal language model.
In Proceedings of the 40th International Conference on
Machine Learning, pp. 8469–8488, 2023.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mor-
datch, I. Improving factuality and reasoning in lan-
guage models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Engler, D. R., Kaashoek, M. F., and O’Toole Jr, J. Exokernel:
An operating system architecture for application-level
resource management. ACM SIGOPS Operating Systems
Review, 29(5):251–266, 1995.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu,
H., Tang, A., Huang, D.-A., Zhu, Y., and Anandkumar, A.
Minedojo: Building open-ended embodied agents with
internet-scale knowledge. Advances in Neural Informa-
tion Processing Systems, 35:18343–18362, 2022.

Fu, Y., Peng, H., Khot, T., and Lapata, M. Improv-
ing language model negotiation with self-play and in-

AIOS: LLM Agent Operating System

context learning from ai feedback. arXiv preprint
arXiv:2305.10142, 2023.

Ge, Y., Hua, W., Mei, K., Tan, J., Xu, S., Li, Z., and Zhang,
Y. OpenAGI: When LLM Meets Domain Experts. Ad-
vances in Neural Information Processing Systems, 36,
2023a.

Ge, Y., Ren, Y., Hua, W., Xu, S., Tan, J., and Zhang, Y. LLM
as OS, Agents as Apps: Envisioning AIOS, Agents and
the AIOS-Agent Ecosystem. arXiv:2312.03815, 2023b.

Geng, S., Liu, S., Fu, Z., Ge, Y., and Zhang, Y. Recommen-
dation as language processing (rlp): A unified pretrain,
personalized prompt & predict paradigm (p5). In Pro-
ceedings of the 16th ACM Conference on Recommender
Systems, pp. 299–315, 2022.

Hao, S., Gu, Y., Ma, H., Hong, J., Wang, Z., Wang, D., and
Hu, Z. Reasoning with language model is planning with
world model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp.
8154–8173, 2023.

Hoare, C. A. R. Monitors: An operating system structuring
concept. Communications of the ACM, 17(10):549–557,
1974.

Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y., Wang,
J., Zhang, C., Wang, Z., Yau, S. K. S., Lin, Z., et al.
Metagpt: Meta programming for multi-agent collabora-
tive framework. In The Twelfth International Conference
on Learning Representations, 2023.

Hua, W., Fan, L., Li, L., Mei, K., Ji, J., Ge, Y., Hemphill, L.,
and Zhang, Y. War and peace (waragent): Large language
model-based multi-agent simulation of world wars. arXiv
preprint arXiv:2311.17227, 2023.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pp. 9118–9147.
PMLR, 2022.

IBM, C. What is batch processing? z/OS Concepts, 2010.

Jennings, N. R., Sycara, K., and Wooldridge, M. A roadmap
of agent research and development. Autonomous agents
and multi-agent systems, 1:7–38, 1998.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. R. SWE-bench: Can language
models resolve real-world github issues? In The Twelfth

International Conference on Learning Representations,
2024.

Josifoski, M., Klein, L., Peyrard, M., Li, Y., Geng, S.,
Schnitzler, J. P., Yao, Y., Wei, J., Paul, D., and West,
R. Flows: Building blocks of reasoning and collaborating
ai. arXiv preprint arXiv:2308.01285, 2023.

Kim, G., Baldi, P., and McAleer, S. Language models can
solve computer tasks. Advances in Neural Information
Processing Systems, 36, 2023.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Lerman, K. and Galstyan, A. Agent memory and adaptation
in multi-agent systems. In Proceedings of the second
international joint conference on Autonomous agents and
multiagent systems, pp. 797–803, 2003.

Li, G., Hammoud, H., Itani, H., Khizbullin, D., and Ghanem,
B. Camel: Communicative agents for "mind" exploration
of large language model society. Advances in Neural
Information Processing Systems, 36, 2023.

Liang, T., He, Z., Jiao, W., Wang, X., Wang, Y., Wang,
R., Yang, Y., Tu, Z., and Shi, S. Encouraging divergent
thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Liu, C. L. and Layland, J. W. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal
of the ACM (JACM), 20(1):46–61, 1973.

Lucas, K. Open interpreter. https://github.com/
OpenInterpreter/open-interpreter, 2024.

Mandi, Z., Jain, S., and Song, S. Roco: Dialectic multi-
robot collaboration with large language models. arXiv
preprint arXiv:2307.04738, 2023.

McKusick, M. K., Joy, W. N., Leffler, S. J., and Fabry,
R. S. A fast file system for unix. ACM Transactions on
Computer Systems (TOCS), 2(3):181–197, 1984.

Mialon, G., Fourrier, C., Swift, C., Wolf, T., LeCun, Y., and
Scialom, T. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983, 2023.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L.,
Kim, C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W.,
Jiang, X., Cobbe, K., Eloundou, T., Krueger, G., Button,
K., Knight, M., Chess, B., and Schulman, J. Webgpt:
Browser-assisted question-answering with human feed-
back, 2022.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large

https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter

AIOS: LLM Agent Operating System

language model for code with multi-turn program synthe-
sis. arXiv preprint arXiv:2203.13474, 2022.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311–318,
2002.

Parisi, A., Zhao, Y., and Fiedel, N. Talm: Tool augmented
language models. arXiv preprint arXiv:2205.12255,
2022.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and
Technology, pp. 1–22, 2023.

Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J.,
Liu, Z., and Sun, M. Communicative agents for software
development. arXiv preprint arXiv:2307.07924, 2023.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin, Y.,
Cong, X., Tang, X., Qian, B., et al. Toolllm: Facilitating
large language models to master 16000+ real-world apis.
ICLR, 2024.

Ritchie, D. M. and Thompson, K. The unix time-sharing
system. Communications of the ACM, 17(7):365–375,
1974.

Rosenblum, M. and Ousterhout, J. K. The design and imple-
mentation of a log-structured file system. ACM Transac-
tions on Computer Systems (TOCS), 10(1):26–52, 1992.

Ross, S. I., Martinez, F., Houde, S., Muller, M., and Weisz,
J. D. The programmer’s assistant: Conversational in-
teraction with a large language model for software de-
velopment. In Proceedings of the 28th International
Conference on Intelligent User Interfaces, pp. 491–514,
2023.

Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Cancedda, N., and Scialom, T. Tool-
former: Language models can teach themselves to use
tools. arXiv preprint arXiv:2302.04761, 2023.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2023.

Tang, Q., Deng, Z., Lin, H., Han, X., Liang, Q., and
Sun, L. Toolalpaca: Generalized tool learning for lan-
guage models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn,
A., Saravia, E., Poulton, A., Kerkez, V., and Stojnic, R.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085, 2022.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. In
Intrinsically-Motivated and Open-Ended Learning Work-
shop@ NeurIPS2023, 2023a.

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H.,
and Ji, H. Mint: Evaluating llms in multi-turn interac-
tion with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023b.

Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., and Ji, H.
Unleashing cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300, 1(2):
3, 2023c.

Wooldridge, M. and Jennings, N. R. Intelligent agents:
Theory and practice. The knowledge engineering review,
10(2):115–152, 1995.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., Li,
B., Jiang, L., Zhang, X., and Wang, C. Autogen: Enabling
next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023.

Wu, Z., Han, C., Ding, Z., Weng, Z., Liu, Z., Yao, S.,
Yu, T., and Kong, L. Os-copilot: Towards generalist
computer agents with self-improvement. arXiv preprint
arXiv:2402.07456, 2024.

Xiang, J., Tao, T., Gu, Y., Shu, T., Wang, Z., Yang, Z., and
Hu, Z. Language models meet world models: Embod-

AIOS: LLM Agent Operating System

ied experiences enhance language models. Advances in
neural information processing systems, 36, 2023.

Xie, J., Zhang, K., Chen, J., Zhu, T., Lou, R., Tian, Y.,
Xiao, Y., and Su, Y. Travelplanner: A benchmark for
real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao,
S., Narasimhan, K., and Press, O. Swe-agent: Agent-
computer interfaces enable automated software engineer-
ing.

Yao, S. and Narasimhan, K. Language agents in the digital
world: Opportunities and risks. princeton-nlp.github.io,
2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. ReAct: Synergizing reasoning and act-
ing in language models. International Conference on
Learning Representations, 2023.

Zhang, K., Li, G., Li, J., Li, Z., and Jin, Z. Toolcoder:
Teach code generation models to use apis with search
tools. arXiv preprint arXiv:2305.04032, 2023.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi,
Y. Bertscore: Evaluating text generation with bert. arXiv
preprint arXiv:1904.09675, 2019.

Zhang, Z., Bo, X., Ma, C., Li, R., Chen, X., Dai, Q., Zhu,
J., Dong, Z., and Wen, J.-R. A survey on the memory
mechanism of large language model based agents. arXiv
preprint arXiv:2404.13501, 2024.

Zhu, X., Chen, Y., Tian, H., Tao, C., Su, W., Yang, C.,
Huang, G., Li, B., Lu, L., Wang, X., et al. Ghost in the
minecraft: Generally capable agents for open-world envi-
roments via large language models with text-based knowl-
edge and memory. arXiv preprint arXiv:2305.17144,
2023.

AIOS: LLM Agent Operating System

APPENDIX

This appendix contains additional details for the paper: “AIOS: LLM Agent Operating System”. The appendix is organized
as follows:

• Section §A provides AIOS Kernel Implementation Details.

• Section §B reports more about AIOS-Agent SDK.

• Section §C reports more Details of Agent Benchmarks.

• Section §D shows more Additional Experimental Results.

• Section §E analyzes Discussion.

A AIOS KERNEL IMPLEMENTATION DETAILS
A.1 AIOS System Call
The modules in AIOS achieve their functionalities by invoking system calls. Table 5 shows a more comprehensive list of
system calls correspondent to different modules and present the arguments for invoking these system calls.

Table 5. AIOS System Calls.

Module AIOS System Call Arguments

Scheduler

set_id aid: int
get_id -
set_status status: string
get_status -
set_priority priority: int
get_priority -

LLM core(s) llm_generate prompt: list

Memory Manager

mem_alloc aid: int
mem_read aid: int, rid: int
mem_write aid: int, rid: int, s: string
mem_clear aid: int, rid: int

Storage Manager

sto_create aname: string, aid: int, rid: int
sto_read aname: string, aid: int, rid: int
sto_write aname: string, aid: int, rid: int, s: string
sto_retrieve aname: string, aid: int, rid: int, query: string
sto_clear aname: string, aid: int, rid: int

Tool Manager tool_run params: dict

Context Manager

gen_snapshot cid: int, data: bytes | string
gen_restore cid: int
check_restore cid: int
clear_restore cid: int

Access Manager check_access sid: int, tid: int
ask_permission aid: int, operation: string

Thread Binding. Each system call within AIOS is bound to a separate thread for execution, allowing for concurrent
processing. The thread binding is implemented by inheriting the Thread class and overwrites its init and run methods.

AIOS: LLM Agent Operating System

class SysCall(Thread):
def __init__(self, agent_name, request_data):

super().__init__()
self.agent_name = agent_name
self.request_data = request_data
self.event = threading.Event()
self.pid = None
self.status = None
self.response = None
self.time_limit = None
self.created_time = None
self.start_time = None
self.end_time = None

def run(self):
self.set_pid(self.native_id)
self.event.wait()

A.2 LLM Core(s)
AIOS provides multiple different LLM instances for agents to choose, and an agent can choose one LLM instance as the
core during runtime. The structure for implementing different LLM cores is defined in the LLMCore abstract class, which
defines the unified function interface for different LLM instances.

AIOS: LLM Agent Operating System

class LLMCore(ABC):
def __init__(self,

llm_name: str,
max_gpu_memory: dict = None,
eval_device: str = None,
max_new_tokens: int = 256,
log_mode: str = "console"):

""" Initialize LLMCore with model configurations
"""
pass

@abstractmethod
def load_llm_and_tokenizer(self) -> None:

""" Load the LLM model and tokenizer
"""
pass

def tool_calling_input_format(self,
prompt: list,
tools: list) -> list:

""" Format prompts to include tool information
"""
pass

def parse_tool_calls(self, tool_call_str):
""" Parse and add tool call identifiers for models without tool support
"""
pass

@abstractmethod
def address_request(self,

llm_request,
temperature=0.0):

""" Process the request sent to the LLM
"""
pass

@abstractmethod
def llm_generate(self,

prompt,
temperature=0.0):

""" Generate a response based on the provided prompt
"""
pass

A.3 Scheduler
For implementing schedulers, different scheduling strategies (e.g., FIFO, RR) will be achieved by creating specific schedulers
that inherit from the base scheduler defined below. This approach ensures that new scheduling strategies can be added
without interfering with existing schedulers, maintaining isolation and flexibility.

AIOS: LLM Agent Operating System

class Scheduler:
def __init__(

self,
llm,
memory_manager,
storage_manager,
tool_manager,
get_llm_request: LLMRequestQueueGetMessage,
get_memory_request: MemoryRequestQueueGetMessage,
get_storage_request: StorageRequestQueueGetMessage,
get_tool_request: ToolRequestQueueGetMessage,

):
""" Initializes the Scheduler with managers, request handlers, and threads for

processing
"""
self.get_llm_request = get_llm_request
self.get_memory_request = get_memory_request
self.get_storage_request = get_storage_request
self.get_tool_request = get_tool_request
self.active = False # start/stop the scheduler
self.log_mode = log_mode
self.request_processors = {

"llm_syscall_processor": Thread(target=self.run_llm_request),
"mem_syscall_processor": Thread(target=self.run_memory_request),
"sto_syscall_processor": Thread(target=self.run_storage_request),
"tool_syscall_processor": Thread(target=self.run_tool_request)

}
self.llm = llm
self.memory_manager = memory_manager
self.storage_manager = storage_manager
self.tool_manager = tool_manager

def start(self):
""" Starts the scheduler and runs all request processor threads
"""
self.active = True
for name, thread_value in self.request_processors.items():

thread_value.start()

def stop(self):
""" Stops the scheduler and joins all processor threads
"""
self.active = False
for name, thread_value in self.request_processors.items():

thread_value.join()

def run_llm_syscall(self):
""" Handles LLM system call requests
"""
pass

def run_memory_syscall(self):
""" Handles memory system call requests
"""
pass

def run_storage_syscall(self):
""" Handles storage system call requests
"""
pass

def run_tool_syscall(self):
""" Handles tool system call requests
"""
pass

AIOS: LLM Agent Operating System

A.4 Context Manager
The context manager is designed to interrupt the context during the generation process of LLM. In the context manager,
we consider the following two cases. If the LLM successfully decodes the first token within the given time, the context
manager will save the intermediate generation results during the decoding process. This ensures that intermediate results are
stored without generating from the scratch. If the LLM is unable to decode the first token within the time slice, the context
manager instead saves the intermediate KV caches generated during the pre-filling phase.

class ContextManager:
def __init__(self):

Dictionary to store contexts by context ID
self.context_data = {}
Lock to prevent concurrent access
self.lock = threading.Lock()

def gen_snapshot(self, cid, data):
""" Acquire lock before modifying the dictionary
"""
with self.lock:

self.context_data[cid] = data

def gen_restore(self, cid):
""" Acquire lock before reading the dictionary
"""
with self.lock:

if self.check_restore(cid):
return self.context_data[cid]

else:
return None

def check_restore(self, cid):
""" Acquire lock to ensure consistent read
"""
with self.lock:

return cid in self.context_data

def clear_restore(self, cid):
""" Acquire lock before modifying the dictionary
"""
with self.lock:

if process_id in self.context_data:
del self.context_data[cid]

A.5 Memory Manager
In the memory manager, we leverage the zlip1 library which is based on the prefix-tree data compression algorithm to
convert the string-format data into compressed binary data and store. Implementation details are shown below.

1https://docs.python.org/3/library/zlib.html

https://docs.python.org/3/library/zlib.html

AIOS: LLM Agent Operating System

class MemoryManager:
def __init__(self,

memory_limit,
eviction_k,
storage_manager):

""" Initialize the memory manager with limits and a storage manager
"""
self.memory_blocks = Dict()
self.memory_limit = memory_limit
self.eviction_k = eviction_k
self.storage_manager = storage_manager

def mem_alloc(self, aid):
""" Allocate a new memory block for an agent if it does not exist
"""
if aid not in self.memory_blocks:

self.memory_blocks[aid] = OrderedDict()
self.storage_manager.sto_create(aid)

def mem_read(self, aid, rid):
""" Retrieve a specific memory block for an agent, decompressing if in memory,

otherwise from storage
"""
if aid in self.memory_blocks and rid in self.memory_blocks[aid]:

compressed_data = self.memory_blocks[aid].pop(rid)
self.memory_blocks[aid][rid] = compressed_data
return pickle.loads(zlib.decompress(compressed_data))

else:
return self.storage_manager.sto_read(aid, rid)

def mem_write(self, aid, rid, s):
""" Write a block of data for an agent, compressing and evicting if memory limit

exceeded
"""
self.mem_alloc(aid)
serialized_data = pickle.dumps(s)
compressed_data = zlib.compress(serialized_data)

if rid in self.memory_blocks[aid]:
self.memory_blocks[aid].pop(rid)

self.memory_blocks[aid][rid] = compressed_data

if self._total_memory_count() > self.memory_limit:
self._evict_memory(aid)

def mem_clear(self, aid):
""" Clear all memory blocks for a specific agent, removing both from memory and

storage
"""
if aid in self.memory_blocks:

del self.memory_blocks[aid]
self.storage_manager.sto_clear(aid)

def _total_memory_count(self):
""" Calculate total memory block count across all agents
"""
return sum(len(blocks) for blocks in self.memory_blocks.values())

def _evict_memory(self, aid):
""" Evict K least recently used blocks for an agent, storing them in persistent

storage
"""
if aid in self.memory_blocks:

for _ in range(min(self.eviction_k,
len(self.memory_blocks[aid]))):

rid, compressed_data = self.memory_blocks[aid].popitem(last=False)
self.storage_manager.sto_write(aid, rid, pickle.loads(zlib.decompress(

compressed_data)))

AIOS: LLM Agent Operating System

A.6 Storage Manager
The storage manager uses files and vector databases (if vector database is enabled) to manage persistently stored data.
Implementation details are shown below.

AIOS: LLM Agent Operating System

class StorageManager:
def __init__(self, storage_path, vector_db=None):

""" Initializes storage path and optional vector database
"""
self.storage_path = storage_path
os.makedirs(self.storage_path, exist_ok=True)
self.vector_db = vector_db

def sto_create(self, aname, aid=None, rid=None):
""" Creates a storage file and initializes a collection in the vector database
"""
file_path = os.path.join(self.storage_path, f"{aid}_{rid}.dat" if aid and rid else

f"{aname}.dat")

if not os.path.exists(file_path):
with open(file_path, "wb") as file:

file.write(b"")
if self.vector_db:

self.vector_db.create_collection(f"{aid}_{rid}" if aid and rid else aname)

def sto_read(self, aname, aid=None, rid=None):
""" Reads data from a storage file if it exists
"""
file_path = os.path.join(self.storage_path, f"{aid}_{rid}.dat" if aid and rid else

f"{aname}.dat")

if os.path.exists(file_path):
with open(file_path, "rb") as file:

compressed_data = file.read()
return pickle.loads(zlib.decompress(compressed_data)) if compressed_data

else None
return None

def sto_write(self, aname, s, aid=None, rid=None):
""" Writes compressed data to a storage file and adds it to the vector database
"""
file_path = os.path.join(self.storage_path, f"{aid}_{rid}.dat" if aid and rid else

f"{aname}.dat")

with open(file_path, "ab") as file:
compressed_data = zlib.compress(pickle.dumps(s))
file.write(compressed_data)

if self.vector_db:
self.vector_db.add(f"{aid}_{rid}" if aid and rid else aname, s)

def sto_clear(self, aname, aid=None, rid=None):
""" Clears the storage file and deletes the corresponding vector database

collection
"""
file_path = os.path.join(self.storage_path, f"{aid}_{rid}.dat" if aid and rid else

f"{aname}.dat")

if os.path.exists(file_path):
os.remove(file_path)

if self.vector_db:
self.vector_db.delete(f"{aid}_{rid}" if aid and rid else aname)

def sto_retrieve(self, aname, query, aid=None, rid=None):
""" Retrieves data from the vector database using a query
"""
if self.vector_db:

return self.vector_db.retrieve(f"{aid}_{rid}" if aid and rid else aname, query
)

return None

AIOS: LLM Agent Operating System

A.7 Tool Manager
The tool manager module is responsible for loading tools executing tools with tool conflict prevention mechanisms.
Implementation details are shown below.

class ToolManager:
def __init__(self):

""" Initializes the ToolManager with a conflict map and a thread lock
"""
self.tool_conflict_map = {}
self.lock = threading.Lock()

def tool_run(self, syscall) -> None:
""" Runs a tool with given parameters, ensuring no conflict with other tool

executions
"""
request_data = syscall.request_data
tool_org_and_name, tool_params = request_data["name"], request_data["paramemters"]

if tool_org_and_name not in self.tool_conflict_map.keys():
with self.lock:

self.tool_conflict_map[tool_org_and_name] = 1
tool_class = self.load_tool_instance(tool_org_and_name)

tool = tool_class(
tool_org_and_name=tool_org_and_name.split("/")[1]

)
tool.run(

params=tool_params
)

with self.lock:
self.tool_conflict_map.pop(tool_org_and_name)

def snake_to_camel(self, snake_str):
""" Converts a snake_case string to CamelCase
"""
components = snake_str.split("_")
return "".join(x.title() for x in components)

def load_tool_instance(self, tool_org_and_name):
""" Dynamically loads a tool instance based on organization and tool name
"""
org, tool_name = tool_org_and_name.split("/")
module_name = ".".join(["tools", org, tool_name])
class_name = self.snake_to_camel(tool_name)

tool_module = importlib.import_module(module_name)
tool_instance = getattr(tool_module, class_name)
return tool_instance

A.8 Access Manager
The access manager provides two key functions: First is to check access when agents attempt to access other agents’ resources.
Second is to request user permission before agents execute irreversible actions such as deletion of files. Implementation
details are shown below.

AIOS: LLM Agent Operating System

class AccessManager:
def __init__(self):

self.privilege_map = {}

def add_privilege(self, sid, tid):
""" Assigns an agent into another agent’s privilege group
"""
if tid not in self.privilege_map.keys():

self.privilege_map[tid] = []
self.privilege_map[tid].append(sid)

def check_access(self, sid, tid):
""" Checks if the source agent is in the target agent’s priviledge group
"""
if sid in self.privilege_map.get(sid):

return True
else:

return False

def ask_permission(self, aid, operation):
""" Prompts the user for confirmation before an irreversible operation
"""
confirmation = input(f"Confirm? (yes/no):").strip().lower()
return confirmation == "yes"

A.9 Module Hooks
To effectively separate the interface of calling the AIOS kernel modules from the implementation details, we employ a hook
mechanism to initialize modules and export the necessary call interfaces. Here are the hooks we use for initializing modules.

@validate(LLMParams)
def useLLM(params: LLMParams) -> LLM:

""" Initialize and return a Language Learning Model (LLM) instance.

Args:
params (LLMParams): Parameters required for LLM initialization.

Returns:
LLM: An instance of the initialized LLM.

"""
return LLM(**params.model_dump())

@validate(MemoryManagerParams)
def useMemoryManager(params: MemoryManagerParams) -> MemoryManager:

""" Initialize and return a memory instance.

Args:
params (MemoryParams): Parameters required for Memory Manager Initialization.

Returns:
Memory Manager: An instance of the initialized Memory Manager.

"""
return MemoryManager(**params.model_dump())

AIOS: LLM Agent Operating System

@validate(StorageManagerParams)
def useStorageManager(params: StorageManagerParams) -> StorageManager:

""" Initialize and return a storage instance.

Args:
params (StorageManagerParams): Parameters required for Memory Manager

Initialization.

Returns:
Storage Manager: An instance of the initialized Storage Manager.

"""
return StorageManager(**params.model_dump())

@validate(ToolManagerParams)
def useToolManager(params: ToolManagerParams) -> ToolManager:

""" Initialize and return a tool instance.

Args:
params (ToolManagerParams): Parameters required for Tool Manager Initialization.

Returns:
Tool Manager: An instance of the initialized Tool Manager.

"""
return ToolManager(**params.model_dump())

AIOS: LLM Agent Operating System

@validate(SchedulerParams)
def useScheduler(params: SchedulerParams,) -> Tuple[Callable[[], None], Callable[[], None

]]:
""" Initialize and return a scheduler with start and stop functions.

Args:
params (SchedulerParams): Parameters required for the scheduler.

Returns:
Tuple: A tuple containing the start and stop functions for the scheduler.

"""
if params.get_llm_request is None:

from aios.hooks.stores._global import global_llm_req_queue_get_message
params.get_llm_request = global_llm_req_queue_get_message

if params.get_memory_request is None:
from aios.hooks.stores._global import global_memory_req_queue_get_message
params.get_memory_request = global_memory_req_queue_get_message

if params.get_storage_request is None:
from aios.hooks.stores._global import global_storage_req_queue_get_message
params.get_storage_request = global_storage_req_queue_get_message

if params.get_storage is None:
from aios.hooks.stores._global import global_tool_req_queue_get_message
params.get_tool_request = global_tool_req_queue_get_message

scheduler = Scheduler(**params.model_dump())

Function to start the scheduler
def startScheduler():

scheduler.start()

Function to stop the scheduler
def stopScheduler():

scheduler.stop()

return startScheduler, stopScheduler

B AIOS-AGENT SDK
B.1 Query and Response
In the AIOS-Agent SDK, two main data structures, Query and Response are defined to facilitate agent interactions with the
AIOS kernel by structuring input requests and output responses. The Query class serves as the input structure for agents to
perform various actions within AIOS. It includes: The Response class represents the output structure that agents receive
after the AIOS kernel processes the functions to return the Response.

AIOS: LLM Agent Operating System

class Query(BaseModel):
""" Query class represents the input structure for performing various actions.

Attributes:
messages: A list of dictionaries where each dictionary

represents a message containing ’role’ and ’content’ or other key-value pairs.
tools: An optional list of JSON-like objects (dictionaries)

representing tools and their parameters. Default is an empty list.
action_type: A string that must be one of "chat", "call_tool", or "operate_file".

This restricts the type of action the query performs.
message_return_type: The type of the response message. Default is "text".

"""

messages: List[Dict[str, Union[str, Any]]]
List of message dictionaries, each containing role and content.

tools: Optional[List[Dict[str, Any]]] = Field(default_factory=list)
List of JSON-like objects (dictionaries) representing tools.

action_type: Literal["chat", "call_tool", "operate_file"] = Field(default="chat")
Restrict the action_type to specific choices.

message_return_type: str = Field(default="text")
Type of the return message, default is "text".

class Response(BaseModel):
""" Response class represents the output structure after performing actions.

Attributes:
response_message (Optional[str]): The generated response message. Default is None.
tool_calls (Optional[List[Dict[str, Any]]]): An optional list of JSON-like objects

(dictionaries)
representing the tool calls made during processing. Default is None.

"""
response_message: Optional[str] = None
The generated response message, default is None.

tool_calls: Optional[List[Dict[str, Any]]] = None
List of JSON-like objects representing tool calls, default is None.

B.2 Native Supported External Tools.
As is illustrated in Table 6, AIOS-Agent SDK integrates diverse computational tools to address a wide spectrum of
information processing tasks. The SDK incorporates 17 native tools spanning multiple modalities and functionalities,
enabling sophisticated interaction patterns across text, image, and audio domains. These tools can be categorized into three
primary sources: established technology providers (Google, Bing, WolframAlpha), specialized API hubs (Rapid API Hub),
and advanced AI model providers (Huggingface). The toolkit’s architecture demonstrates particular strength in text-based
operations, with 12 tools supporting text input or output modalities. This includes fundamental information retrieval services
(Arxiv, BingSearch, Wikipedia), specialized analytical tools (CurrencyConverter, MoonPhaseSearch), and domain-specific
applications (ImdbRank, TripAdvisor). Furthermore, the SDK exhibits robust cross-modal capabilities through tools like
VisualQuestionAnswering (image-text integration), TextToAudio (text-to-speech synthesis), and VoiceActivityRecognition
(speech-to-text conversion).

B.3 Native Agent Examples
Here we provide examples of agents developed by leveraging the capabilities of the AIOS-Agent SDK. Travel Agent:
The travel agent utilizes the AIOS-Agent SDK to access APIs and tools for trip planning, including searching for flights,
accommodations, and local activities. Rec Agent: The recommendation agent leverages the AIOS-Agent SDK to suggest
movies and TV series. Math Agent: This agent utilizes the SDK to access mathematical tools and computation resources,
allowing it to solve equations, perform calculations, and provide step-by-step explanations for different math problems.

AIOS: LLM Agent Operating System

Table 6. Native tools supported by AIOS-Agent SDK, ordered by names in alphabet.
Tool Name Source Type Modality (Input → Output)

Arxiv Arxiv API Text → Text
BingSearch Bing API Text → Text
CurrencyConverter Rapid API Hub API Text → Text
GooglePlace Google API Image/Text → Text
GoogleSearch Google API Text → Image
ImageCaption Huggingface Local Model/API Text → Text
ImdbRank Rapid API Hub API Text → Text
MoonPhaseSearch Rapid API Hub API Text → Text
Shazam Rapid API Hub API Text → Text/Audio
TextToAudio Huggingface Local Model/API Text → Audio
TextToImage Huggingface Local Model/API Text → Image
TripAdvisor Rapid API Hub API Text → Text
VisualQuestionAnswering Huggingface Local Model/API Image & Text → Text
VoiceActivityRecognition Huggingface Local Model/API Audio → Text
Wikipedia Wikipedia API Text → Text
WolframAlpha WolframAlpha API Text → Text
WordsAPI Rapid API Hub API Text → Text

Creation Agent: The creation agent is tailored for content generation tasks, such as writing, graphic design, or even
video editing. By accessing creative tools and resources through the AIOS-Agent SDK, the creation agent can assist with
generating textual content, designing visuals, or assembling multimedia elements, enabling users to produce high-quality
content efficiently. Academic Agent: The academic agent is designed to support research and learning, utilizing the SDK to
access scholarly articles to assist with literature reviews and even provide explanations on complex academic topics.

TravelAgent Profile

Description: You are an expert in planning and managing travel itineraries.
Workflow:

1. Identify the destination and search for hotel locations using the hotel_location_search tool.
2. Based on the hotel locations, find suitable hotels using the hotel_search tool, and select the best one.
3. Get detailed information about the selected hotel using the get_hotel_details tool.
4. Search for the nearest airport to the origin using the airport_search tool.
5. Search for the nearest airport to the destination using the airport_search tool.
6. Find available flights to the destination airport using the flight_search tool using the correct date.
7. Search for restaurant locations near destination using the restaurant_location_search tool.
8. Based on the restaurant locations, find suitable restaurants using the restaurant_search tool.
9. Get detailed information about the selected restaurants using the get_restaurant_details tool.

10. Gather additional relevant information about the destination the user is visiting using the wikipedia tool.
11. Integrate the information gathered from the previous steps to provide a comprehensive travel plan.

Available tools:
1. TripAdvisor
2. Wikipedia

Example of task inputs: I want to take a trip to Paris, France from July 4th to July 10th, 2024, and I am traveling
from New York City. Help me plan this trip.

AIOS: LLM Agent Operating System

RecAgent Profile

Description: You are an expert who is good at recommending TV series and movies.
Workflow:

1. Identify the tool that you need to call to obtain information.
2. Based on the information, give recommendations for the user based on the constrains.

Available tools:
1. TripAdvisor
2. Wikipedia

Example of task inputs: Recommend three action movies from the past five years ranked between 1 and 20 with
ratings above 8.0.

CreationAgent Profile

Description: You are an expert who is good at content creation.
Workflow:

1. Convert the vague description of the content requirements into concrete objects and fill in more details.
2. Identify the tool to call the tool to create content based on the filled details.

Available tools:
1. SDXL-Turbo

Example of task inputs: Create an image of a sleek, high-tech futuristic city with a vibrant nightlife atmosphere.

MathAgent Profile

Description: You are an expert who is good at solving mathematical problems.

Workflow:
1. Identify the tool to call to do some pre-calculation.
2. Perform mathematical operations using the pre-calculated result, which could involve addition, subtraction,

multiplication, or division with other numeric values to solve the problem.
Available tools:

1. Currency Converter
2. WolframAlpha

Example of task inputs: Convert 15000 MXN to Canadian Dollars and find out how much it would be in USD if 1
CAD equals 0.79 USD.

AcademicAgent Profile

Description: You are an expert who is good at looking up and obtaining information from academic articles.

Workflow:
1. Identify the tool to call based on the academic requirements and call the tool.
2. Gather the information obtained from the tool to write an outline or summarization.

Available tools:
1. Arxiv API

Example of task inputs: Summarize recent studies on the role of artificial intelligence in drug discovery from 2018
to 2023.

B.4 Support of Agent Frameworks
The core idea to adapt agents built by existing agent frameworks for AIOS is to identify the core functions that will interact
with system resources and change that with functions in our native adapters. In this section, we illustrate the crucial
adaptation function that needs to be changed to run agents built by other agent frameworks on AIOS.

ReAct (Yao et al., 2023). The ReAct framework integrates reasoning and action steps in language models, allowing them

AIOS: LLM Agent Operating System

to generate intermediate reasoning traces alongside actionable steps for complex task completion. This dual approach
helps models not only plan and track their thought process but also interact with external tools, improving performance
on tasks like question answering, game environments, and decision-making problems that require multi-step reasoning
and adaptability. By alternating between reasoning and action, ReAct reduces errors from solely predictive responses and
enables more accurate, contextually aware task completion.

Reflexion (Shinn et al., 2023). The Reflexion framework enhances language agents with a feedback-driven mechanism,
allowing them to learn from mistakes and adapt behavior through self-reflective feedback loops. By leveraging verbal
reinforcement learning, agents assess and adjust their actions, which improves performance on complex tasks through
iterative learning. This approach makes language agents more resilient and adaptive, enabling them to handle tasks with
evolving requirements and uncertainty.

Autogen (Wu et al., 2023). AutoGen introduces a framework that leverages multiple language model agents with distinct
roles (such as Planner, Executor, and Reflector) to collaboratively solve complex tasks through structured, goal-oriented
conversations. By enabling agents to communicate and share intermediate results, AutoGen coordinates multi-step processes
like data analysis, decision-making, and iterative problem-solving, significantly enhancing efficiency and accuracy beyond
a single model’s capabilities. This approach empowers next-generation applications, allowing LLMs to tackle dynamic
workflows, adapt to task-specific nuances, and achieve higher performance in real-world scenarios. Below is the code of
adapting Autogen for AIOS. Due to ongoing refactoring work by the Autogen team, only Autogen-0.2 (the latest stable
version) is supported.

@add_framework_adapter("AutoGen~0.2")
def prepare_autogen_0_2():

"""
Replace OpenAIWrapper and ConversableAgent methods with aios’s implementation.

This function is used to adapt autogen’s API to aios’s API, and it is used
internally by aios.
"""
Replace OpenAIWrapper method
OpenAIWrapper.__init__ = adapter_autogen_client_init
OpenAIWrapper.create = adapter_client_create
OpenAIWrapper.extract_text_or_completion_object =

adapter_client_extract_text_or_completion_object

Replace agent method
ConversableAgent._print_received_message = _adapter_print_received_message
ConversableAgent._generate_oai_reply_from_client =

_adapter_generate_oai_reply_from_client
ConversableAgent.generate_tool_calls_reply = adapter_generate_tool_calls_reply
ConversableAgent.execute_function = adapter_execute_function
ConversableAgent._a_execute_tool_call = _adapter_a_execute_tool_call
ConversableAgent.update_tool_signature = adapter_update_tool_signature
ConversableAgent.__init__ = adapter_autogen_agent_init

Open-Interpreter (Lucas, 2024). Open Interpreter is an open-source framework that enables users to interact with LLMs
through a ChatGPT-like interface to interpret and execute complex instructions across programming languages directly in
the terminal. It supports both locally-hosted and cloud-based LLMs, allowing for streamlined code execution and debugging
in natural language. By translating natural language instructions into executable code, Open Interpreter offers an intuitive
environment that not only simplifies development workflows but also facilitates learning by providing detailed explanations
and interactive support for various coding challenges, making it suitable for developers at all skill levels. Below is the core
function to be adapted for Open-Interpreter.

AIOS: LLM Agent Operating System

@add_framework_adapter("Open-Interpreter")
def prepare_interpreter():

""" Prepare the interpreter for running LLM in aios.
"""

Set the completion function in the interpreter
interpreter.llm.completions = adapter_aios_completions

MetaGPT (Hong et al., 2023). MetaGPT proposes a meta-programming approach that optimizes LLM-driven multi-agent
systems by integrating task-oriented programming paradigms for complex, collaborative problem-solving. MetaGPT encodes
Standardized Operating Procedures (SOPs) directly into structured prompt sequences, creating streamlined workflows that
empower agents with human-like domain expertise to systematically verify intermediate outputs and proactively mitigate
errors. Along this line, MetaGPT addresses the limitations of existing LLM-based frameworks, such as hallucination and
cascading errors during agent chaining. This framework facilitates the decomposition of complex tasks into manageable,
interdependent subtasks, improving overall system robustness, especially in high-stakes, iterative processes where reliability
across agent interactions is crucial. Below is the core function to be adapted for MetaGPT.

@add_framework_adapter("MetaGPT")
def prepare_metagpt():

"""
Prepare the metagpt module to run on aios.

This function does the following:
1. Create a fake configuration file with effects similar to "metagpt --init-config"
2. Replace the llm used in metagpt with aios_call
"""
create fake configuration file
prepare_metagpt_config()

BaseLLM.aask = adapter_aask

C DETAILS OF AGENT BENCHMARKS
C.1 HumanEval
The authors (Chen et al., 2021b) 2 introduced HumanEval, a benchmark dataset comprising 164 handwritten programming
problems for evaluating functional correctness of code generation models. Each problem consists of a function signature,
docstring, implementation body, and comprehensive test suite, with an average of 7.7 test cases per problem. The hand-
written nature of these problems is crucial, given that modern language models are typically trained on large portions of
GitHub code containing existing solutions to programming challenges and contest problems. HumanEval is designed to
assess multiple aspects of code generation capability: natural language comprehension, logical reasoning, algorithmic
thinking, and mathematical operations. Through this publicly available benchmark, researchers can conduct rigorous and
standardized evaluations of code generation models.

C.2 MINT
MINT (Wang et al., 2023b)3 introduced a benchmark to evaluate LLMs’ ability to solve challenge tasks through multi-turn
interactions. The benchmark focuses on code generation, decision making, and reasoning tasks that require LLMs to utilize
tools and incorporate natural language feedback. MINT was constructed by curating multiple single-turn datasets, reducing
an original collection of 29,307 instances to 586 carefully selected examples. The benchmark uses success rate (SR) as its
primary evaluation metric, measuring the percentage of successfully completed tasks. For a given interaction limit k ranging
from 1 to 5, each LLM is allowed up to k turns of interaction, with performance measured as SRk. In our experiments, we
set k = 5 and focus exclusively on MINT’s code generation subset.

2The dataset can be found at https://www.github.com/openai/human-eval.
3https://xwang.dev/mint-bench/

https://www.github.com/openai/human-eval
https://xwang.dev/mint-bench/

AIOS: LLM Agent Operating System

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(a) Normalized throughput. Higher is better.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

La
te

nc
y

(N
or

m
al

iz
ed

)

With AIOS Without AIOS

(b) Normalized latency. Lower is better.

Figure 10. Efficiency analysis on different agent frameworks evaluated on the Llama-3.1-8b model on the MINT benchmark.

C.3 GAIA
General AI Assistant (GAIA) (Mialon et al., 2023)4 is a benchmark designed to represent a significant milestone in AI
research by evaluating fundamental capabilities essential for general intelligence. Unlike traditional benchmarks that
focus on specialized professional knowledge, GAIA emphasizes everyday tasks that require core abilities including logical
reasoning, multi-modal processing, web navigation, and effective tool utilization. GAIA comprises 466 questions that
evaluate AI assistants across multiple capabilities including reasoning, multi-modal understanding, coding, and tool usage
(particularly web browsing), with tasks involving various data formats like PDFs, spreadsheets, images, videos, and audio.
The benchmark organizes questions into three difficulty levels based on the number of required steps and tools: Level 1
requires minimal tool usage (≤ 5 steps), Level 2 demands multiple tools and 5-10 steps, while Level 3 tests advanced
general assistance capabilities through complex, multi-step sequences requiring diverse tool combinations. Additionally,
while web browsing is central to GAIA, the benchmark deliberately excludes complex web interactions like file uploads or
posting comments, leaving such evaluations for future research.

C.4 SWEBench-Lite
SWE-bench (Jimenez et al., 2024)5 is a software engineering benchmark constructed through a rigorous three-stage pipeline
that processes GitHub pull requests (PRs) from 12 popular Python repositories. The pipeline filters approximately 90,000
PRs based on attributes (issue resolution and test contribution) and execution criteria (successful installation and fail-to-pass
test transitions), resulting in 2,294 high-quality task instances. Each task requires models to generate patch files that resolve
software issues, with success determined by comprehensive test coverage. The benchmark distinguishes itself through
real-world challenges, extensive input context (averaging 195 words per issue), cross-context editing requirements (typically
spanning 1.7 files and 32.8 lines per solution), and robust test-based evaluation. Notably, SWE-bench’s automated collection
process enables continuous updates with new task instances from GitHub repositories, ensuring benchmark relevance over
time.

D ADDITIONAL EXPERIMENTAL RESULTS
D.1 Efficiency analysis.
We also report the throughput and latency of running agents on other three benchmarks on Llama-3.1-8b and Mistral-7b
compared between using AIOS and without using AIOS. The results are shown in Figure 10 and Figure 11, Figure 12 and
Figure 13, Figure 14 and Figure 15, respectively.

D.2 Correctness of context switch.
To assess the correctness of the context switch supported by the context manager, we employ the BLEU score (Papineni
et al., 2002) and BERT score (Zhang et al., 2019) to measure text similarity. The similarity is calculated against the final
outputs generated for the same agent under the same conditions, only varying with context switch enabled and disabled. As
demonstrated in Table 7, both BLEU and BERT scores achieve a value of 1.0. The suggests that the context switch does not
introduce discrepancies in output quality, suggesting the reliability of the AIOS.

4https://huggingface.co/gaia-benchmark
5https://www.swebench.com/

https://huggingface.co/gaia-benchmark
https://www.swebench.com/

AIOS: LLM Agent Operating System

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(a) Normalized throughput. Higher is better.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(b) Normalized latency. Lower is better.

Figure 11. Efficiency analysis on different agent frameworks evaluated on the Mistral-7b model on the MINT benchmark.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(a) Normalized throughput. Higher is better.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

La
te

nc
y

(N
or

m
al

iz
ed

)

With AIOS Without AIOS

(b) Normalized latency. Lower is better.

Figure 12. Efficiency analysis on different agent frameworks evaluated on the Llama-3.1-8b model on the GAIA benchmark.

E DISCUSSION
E.1 Ethical Consideration
In this section, we discuss both potential positive and negative societal impacts of the work.

The potential positive societal impacts include: 1) Enhanced efficiency and productivity: AIOS can automate routine
tasks, achieve more efficient operations, optimize resource allocation, and reduce bottlenecks, leading to better service
and improved efficiency for agent developers; 2) Improved user experience: with better context, memory, and storage
management, AIOS can offer more personalized and responsive interactions, enhancing user satisfaction across various
applications; 3) Innovation ecosystem: the creation of AIOS could foster a vibrant ecosystem of agent developers and
researchers, driving innovation in AI technologies and applications.

The potential negative societal impacts include: 1) Privacy concerns: the integration of LLMs into operating systems may
raise privacy concerns, as AI models such as LLMs may require access to personal data to provide effective services; 2)
Security risks: as AI systems become more integral to critical infrastructure, they could become targets for cyberattacks,
potentially compromising sensitive data and operations; 3) System failures: the failure of integrated systems could have
widespread consequences, affecting multiple sectors simultaneously and causing disruptions.

Balancing the impacts: To maximize the positive impacts and mitigate the negative ones, it is crucial to adopt a balanced
approach to the development and deployment of AIOS, such as 1) Rules and standards: Implementing responsible
development rules and standards to ensure data privacy, security, and ethical use of AI; 2) Robust design: implementing

Table 7. Correctness of context switch (text-based and logits-based), which checks the similarity between the generated final outputs with
context switch enabled and disabled.

LLM core Method BLEU Score BERT Score

Mistral-7B Text-based 1.0 1.0
Logits-based 1.0 1.0

Llama-3-8B Text-based 1.0 1.0
Logits-based 1.0 1.0

AIOS: LLM Agent Operating System

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(a) Normalized throughput. Higher is better.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(b) Normalized latency. Lower is better.

Figure 13. Efficiency analysis on different agent frameworks evaluated on the Mistral-7b model on the GAIA benchmark.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(a) Normalized throughput. Higher is better.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

La
te

nc
y

(N
or

m
al

iz
ed

)

With AIOS Without AIOS

(b) Normalized latency. Lower is better.

Figure 14. Efficiency analysis on different agent frameworks evaluated on the Llama-3.1-8b model on the SWE-Bench-Lite benchmark.

robust system design, regular maintenance, comprehensive testing, continuous monitoring, backup and recovery plans,
developer training, careful documentation, clear communication, and leveraging AI for predictive maintenance and automated
recovery; 3) Public engagement: engaging with the public to raise awareness about the benefits and challenges of AI,
ensuring that societal concerns are addressed in the development process.

By addressing these considerations, society can harness the potential of AIOS while mitigating its risks, leading to a more
equitable and prosperous future.

E.2 Future Directions
With AIOS as a foundation, there are many directions for future research to pursue. This section outlines potential areas of
study that expand upon the foundational features of AIOS.

Semantic Scheduling Algorithms. The scheduling function of AIOS lays the groundwork for the development of more
advanced algorithms. Future research could focus on algorithms that perform dependency analysis among agent requests,
optimizing the allocation of computational resources. Additionally, some of the tool resources are locally deployed models,
which can also be incorporated into the scheduling paradigm. This includes the management of tool status and snapshots,
suggesting a move towards a unified scheduling framework that encompasses both agents and their tools.

Efficiency of Context Management. More efficient mechanisms can be devised to assist context management. For
example, the pursuit of time-efficient context management techniques could significantly augment user experience by
expediting the processes of context snapshotting and restoration. Also, context compression techniques can also be leveraged
prior to snapshotting, which can yield a more space-efficient solution.

Optimization of Memory and Storage Architecture. In the context of agent collaboration and communication, the future
design of memory and storage systems can adopt a shared approach, enabling the sharing of memory and storage between
agents. Such an architecture would enable agents to access a communal pool of memory and storage, thereby improving the
agents’ decision-making ability since one agent can benefit from other agents’ memory or storage. Moreover, future work
can explore hierarchical storage solutions, designed to optimize data retrieval and storage efficiency. This could involve
prioritizing quicker access and reduced storage allocation for frequently accessed data, and vice versa for less frequently
accessed information.

Safety and Privacy Enhancements. The aspect of safety in AIOS necessitates protective measures against various attacks,

AIOS: LLM Agent Operating System

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(a) Normalized throughput. Higher is better.

ReAct Reflexion Autogen Open-Interpreter MetaGPT
Agents/Agent Frameworks

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) With AIOS Without AIOS

(b) Normalized latency. Lower is better.

Figure 15. Efficiency analysis on different agent frameworks evaluated on the Mistral-7b model on the SWE-Bench-Lite benchmark.

ensuring the system’s resilience against malicious attacks, such as jailbreaking of LLM or unauthorized access of other
agents’ memory. In the realm of privacy, the exploration of advanced encryption techniques is vital for safeguarding data
transmission within AIOS, thus maintaining the confidentiality of agent communications. Furthermore, the implementation
of watermarking techniques could serve to protect the intellectual property of agent developers by embedding unique
identifiers in outputs, facilitating the tracing of data lineage.

In a nutshell, AIOS stands as a motivating body of work that brings a broad spectrum of research opportunities. Each
outlined direction not only can build upon the foundational elements of AIOS but also can contribute to the advancement of
the field at large.

